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SECTION 3

MODAL ANALYSIS OF STRUCTURE-EQUIPMENT SYSTEM

The main characteristic of the interaction between the structure and the

tuned equipment is in the equivalent two—degree—of—freedom system comprising

the equipment and the particular mode of the structure to which it is tuned .

For comparison with the modal analysis of the structure the appropriate

euuations of a two—degree—of—freedom system are given.

The equivalent two degree of freedom system is shown in Fig. 2 in which

lower case letters refer to the equipment and upper case letters to the

j suitable modal properties of the structure. The equivalent or effective

ground motion is denoted by u~~~(t) and the equations of motion are:

t 
~~ J + C(Ü - ~

eff )+K(U — U
eff

) = F(t)
g g 

(3—1)

F(t) = — m~i = c(ci — U) +k ( u — U)
t

where F(t) is the interaction force between the two systems and where m and

M are equipment and structure modal masses, k and K are the respective

stiffnesses and c and C are the damping coefficients. It is convenient

to introduce the variables

w = v ’k/m ,

~~~~c/2~m 
, B C/2~M

the detuning parameter ~ = (~2—w)/w and the mass ratio y = m/M in terms of

which the equations become:

U + 2BQU + c2
2
U = + ~

2 eff 
+ F/M

g 
(3—2)

F(t)/m = —U = 2Bw~ i—~J) + ~
2
(u—U)

Applying the Laplace transform to these equations and eliminating the

structure response gives a single equation for the transform of the equipment
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response in the form

I ti[(p
2 

+ 2Bwp + w
2
) + 

yp
2
(28wp + p

2
)

1 = 
(28wp +  w2)(2Bc2p + Q

2) 
fleff (3 3)

p + 2 B ~2 p + 1 2  p +2B~p +cl g

The equations of motion of the N degree of freedom structural

system take the form

N N N N N
~ M .U + ~ C .U. + K U . = ~ C r~~z + ~ K .r .u (3—4)

j=l 
j3 

~ j=l ij 
~ j=l ~ j=l 

1~ ~ g j=l 
ij j g

+ F(t)e
1

f where M1. is the mass matrix, C1,, the damping matrix and K1. the stiffness

matrix. The vector r
i 
is a vector of influence coefficents introduced to

couple the ac tual ground motion, u
g
(t) to the structure and e

i 
a vector

which is zero at every degree of freedom except that one denoted by the index

r, to which the equipment is attached where it takes unit value. F is the

interaction force between the equipment and the structure.

The natural frequencies c~ and modes are given by the equation

‘~ j=l 
M1~~~ 

j=l 
K1~~~ (3-5)

Assuming that the damping is sufficiently small that it does not introduce

coupling between the modes the equations in modal coordinates become

+ 2B
k~k4k 

+ = 

1=1

where

and 

~~~~~~~~~~~ 

N 

1=lj=1
1 ~~ Cjj/M.K (3—6)

‘I F~ ~ C
1~

r i ~ + ~ K
1

r u  +Fe
i

i=l 
j g  j j g
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The Laplace transform of the structure response U (t) is given by

N

N 
~ ~k~,kp ( )

— r 1—1
U — 1  2 2k—i M.K

(p + 2B
k~
2kP + 

~~

with 
N (3.7)

= 

~~~~ 

(C~~r~~ + Kj~
r
L)ug 

+ Fe
i

The corresponding equation of motion for the equipment displacement u is

—mU = F(t) c~~i — i j )  + K(u — Ur) (3.8)

or in terms of Laplace transforms

—p
2
~ 

= P(p)/m = (28wp + w2)(~ — 

~~ 
(3.9)

From Eq. 3.9 a relationship between u and U is obtained in the form

(p
2 

+ 28wp + 
2
)
_ 

= (28w + w2 )U (3.10)

and from Eq. 3.7 this can be written as

— 2  2
u(p + 28wp + w )  

N N

N .~~~ ~i ~~ 
[Fe. + ~~ (Cj~rgP + Kj~rg)I1gJ

= (28wp + w
2
) 

~ 

i—i 

2 
—l 

2k=l M.
k
(p + 2B

k~k
p +

But we also have P = —mp2~ . Using this to eliminate P in the above , leads

to the final transformed equation for the equipment response.

2 2 N mp2(28wp +

+ 28wp + w ) + 2 
r • r

k=l M.K(p + 2B
k

Q
k

P + cLk)

2 N ~~ ~(C1~
r~p ÷ Ki~r~) 

(3.11)

=(2 8 w+w )~~ 
i=l =1

k=l M.K
(p
2 

+ 2B
k~~k

P + g
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N N k
j  

We note that ~ can be written as ~ H1~ i’1 and
i=l 1=1 N

the assumption of small damping allows the representation of ~ ~~~~ as
N i=l

211 ~2 ~ M ~k Thus the solution for u for the multidegree of freedom
i=l

system takes the form 2

— 2 2 2 N m~~ (28wp +

u[(p + 28wp + w ) + p 2 2
k=l M

k
(p + 2Bk~k

p +

N N (3.12)

N i=l~~ ~~~ 

M
l~

r
~

(2B
k
c2kp + ~~)i28wp + w2) 

—
= 2 2 u

gk=l M
k

(P ÷ 2BkQkP +

In performing the inversion of the Laplace transform by the use of

residue theory , we are interested in the zeros of the term in brackets on

the left hand side. These zeros are the poles of the transfer function.

Here we are restricting attention to the case where the equipment frequency

is close to a struc tural frequency, 
~

, say . This is indicated in Fig. 3.

In this figure the two expressions in the brackets on the left hand side of

Eq. 3.12 have been plotted separately. These plots were obtained by replacing

p by i~ and then drawing the graph of each of the two resulting functions in

the bracketed expression. For simplicity of illustration we have plotted the

figure for the completely undamped case (8 = B1 = ... = B~ = 0). The negative

of the first function plots as a simple quadratic in ~2, becoming zero at ~ = w,

) the natural frequency of the equipment. The function involving the summation

plots as the complicated curve wl-ich goes to ± at ~) ~, k = 1, 2... .N,

the natural frequencies of the structure. Two such curves have been plotted,

one when the equipment mass is small and one when it is not.

The values of ~2 at the intersections of these two curves give the

locations of the zeros of the bracketed expression o’i the left hand side of

Eq. 3.12, which are the poles of the transfer function for the equipment

17
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response, taking into account equipment—structure interaction. It is

seen that in the case of small equipment mass these poles, all of which are

simple, occur near the natural frequencies of the structure . It is important

to note that two closely spaced poles, which we call the tuning poles,

are located near the equipment frequency, one below it and the other above

it as shown in the figure. These two closely spaced poles coalesce into

a double pole when w = 
~ 

and m -
~ 0. Thus the contribution to the sum of

the residues at all of the poles is dominated by those which are associated

with the two tuning poles. In computing the residues at the tuning poles, it

is clear that the contribution from the summation expression is dominated by

the term where k = n because then the denominator of that term is nearly zero.

) Hence in the region of p = iw, Eq. 3.12 can be approximated by

2
‘t m~~ 2( u[(p2 + 28wp + w2) + p

2 L. 28~oip + w

n p +B~~~p +~~n n  n
(3.13)

= 

(2B
n~n

P + (28wp + w2) 
~ ~~~~~ii~~

’Mn~~g
p +2B~ 2 +~~~ i=l i=l

n n  n

Comparing this expression to that for the two—degree—of—freedom system,

Eq. 3.3, we see that the effective mass ratio is

2
~eff 

= m4’ /M (3.14)

and the equivalent ground motion is

eff n
U = C  U
g r g

where
• N N

= ~n ~ 
~D~
’ Mi r ./M (3.15)r r ...1j1 1 J n

I

_ _  
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The solution technique used here will be to obtain the contribution

in the region near p = iw by considering the equivalent two—degree—of—freedom

system defined by the above equations. The contribution to the solution from

the tuning poles requires special treatement, and this will be done in the

context of the equivalent two—degree—of—freedom system. The contribut ions

at the other (N—i) poles is straightforward and will be included after the

two—degree—of-~freedom analysis has been completed . It should be emphasized 1
that the use of an equivalent two—degree—of—freedom system is not essential,

but is only conceptual and introduces no further approximations beyond that 1
made in passing from Eq. 3.12 to Eq. 3.13.

I
I-

(
I
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t SECTIO N 4

ANALYSIS OF TRANSFER FUNCTION FOR TWO—DEGREE-OF—FREEDOM NEARLY TUNED SYSTEM

In the previous section the parameters which appear in the equivalent

two—degree—of—freedom system have been derived. Returning to the Laplace

transform of the equation of motion of the two—degree—of—freedom , Eq. 3.3,

to simplify the subsequent notation, the terms B and Q are used to represent

the structural parameters B , ~I of the tuned mode and y and u should be
n n g

interpreted as the effective mass ratio and ground motion as given by

Eqs. 3.14 and 3.15. In terms of these parameters the transformed equipment

acceleration u(p) takes the form

ii = [N(P)/D(P)lU
g 

(4.1)

where

N(p) = (28wp + w
2
)(2Bw(l+~)p + (l+~)

2
w
2) (4 .2)

and

D(p) = p
4 

+ wp
3
(28(l+E~) + 2B(l+~))+ w2p2(2 + •

~( (4.3)

• 2 3 2 4 2+ 2~ + ~ + 282B(1+F,)) + w p(28(l+F,) + 2B(l+~j) + w (l+~)

where ~ = is the detuning parameter. In what follows attention

( will be concentrated on the equipment acceleration. Completely parallel

results can be easily developed for the equipment displacement.

The nature of the solution depends essentially on the zeroes of the

denominator D(p). Since y, 8, 11 and ~ are small parameters , the roots

of D(p) will be close to those of the system with y, 8, B and ~ taken to

be zero; namely

• p = ± i w

21 
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To determine the location of the poles of D(p) we replace p in Eq. 4.3 by

p = iw(l+~) (4.4)

where ~ is a small quantity. Only the plus sign is taken since the roots

will appear as comp lex conjugates. In terms of 5 the equation D(p) = 0

takes the form

+ [4 - i[28(l+y) + 2B(l+~ ) ) ]~~ t -

+ [4 - y - 2~ - ~2 - 48B(l+~) 
- 3i(28(l+y) + 2B(l+~))1~

2

+ [-2y - 4~ 
- 2~~ - 8BB(l+~) - i(28(2+3y - 2~ - ~2) + 4B(l+~~) ) ]~ (4 .5 )

+ E-y - 48B(l+~ ) - i28(y - 2~ - ~ 2 ) ]  = 0

Solutions for this equation are easy to obtain when 8 = 0 , B = 0 andI# 0,

~~#0and are

1 1

1 
~ 
;(~2 + y) ½]

Also i f y = O ,~~~ = O a n d 8~~~O, B # O , we have

= /1 - 8
2 

- 
~~ + ~~~~ 

, - B~ 1 + iB i8, iB .

Thus, throughout the analysis it will be assumed that 8, B, ~ and y~

are all of the same order , say c, and the various approximations for S will

be based on assuming ó of order E << 1 . When the parameters are not of

the same order the modifications required are obvious.

The solution of Eq. 4.5 retaining terms of order is

~ ±~~~÷1 (
8
~~~~~±~~) (4. 6)

22
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where here and throughout the remainder of the analysis the upper signs are

taken together to give one root and the lower the other . The quantities

A and ~i are given by

½ ½
A = ~.! E{(~2 

+ y — (8 B)
2

)
2 

+ 4f~
2

(8—B) 2 }  + (~
2 ÷y .~(B~B) 2)] (4.7)

r2 
~{~

2 ÷ y - (8 B) 2)2 4- 4~~
2

(8_B) 2}2 ± (~
2 ÷y_ (8_B)2)] (4.8)

It is easy to show that for 8 # 0 and/or B # 0 the imaginary par t is always

positive, thus leading to damped oscillations. In view of the large

number of parameters in this solution there are many special cases and in

the following sections we consider some of these of particular interest

in further detail.

4.1 UNDAMPED TUNED TWO—DEGREE-OF—FREEDOM SYSTEM —

In the case 8 = 0, B = 0 and ~ 0 the solution of Eq. 4—5 retain-

ing terms of order is
— 

½ ½
H = ± —i-— (1 ± 

‘

~~ 
) (4.9)

It is useful in this case to retain the higher order terms in 5 since

these terms are necessary in deriving certain later results on the

floor spectrum method . In terms of the transform parameter p the roots

are 1

= ~~ ± iw -4-- (1 ± - --—) (4.10)

These are indicated in the root locus diagram Fig. 4, with the corres—

ponding complex conjugate roots. It is clear that the roots remain on

the imaginary axis with the small spread between them equal to ~ ½ w.

These will lead to an urtdamped oscillating solution .

23
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Figure 4. Root Locus Diagram for Undamped , Tuned 2DOF System.
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4 . 2  UNDAMPED SLIGHTLY DETUNED NO—DECREE-OF-FREEDOM SYSTEM

( In this case the roots are

(4.11)

• which in terms of p is

2 ½
p 1w (1 + ~~) ± iw(y + ~ 

)/2 (4.12)

(We note that when y -
~ 0 these become p = ± 1w, -I- i~2, .) These roots

and the corresponding complex conjugate roots are indicated in Fig. 5.

( Again an undamped oscillatory solution results and the spread between the

1 2½closely spaced roo ts is now given by w(y + ~ )

¶
1 4 . 3  DAMPED TUNED TWO—DECREE—OF—FREEDOM SYSTEM

We note first that in the case ~ = 0 there is the possibility of

a double root of the equation D(p) = 0. For this to be so, certain relation—

I ships must exist between the coefficients of the various powers of p in

t the expression for D(p) given by Eq. 18 when ~ 0 . It is easy to show

I 
- - 

tha t these condi tions are :

y 8 = O  (4.13)

and

y + -28B = 11
2 + (1 + )282 (4.14)

for nonzero y it is clear from Eq. 4.13 that 8 must be zero and from Eq. 4.14

we must have y = B2 . -

, -  p

The solution of Eq. 4.5, when ~ = 0, retaining terms of order ~
2 
is:

= ~ 8+B 
± (y - (8~B)

2
) (4.15)
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Figure 5. Root Locus Diagram for Undamped , Slightly Detuned 2DOF System.
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Utilizing this as a first approximation and using an iterative method

the solution of Eq. 4.5 retaining terms of order is obtained in the

form :

= 
8 ÷ B 

± -~-{y — (6—B)
2 

1 (y— (8—B)2) (82+B2—y/2)

2 ½ (4.16)
+ I (2fty+(8+B)(y—(13—B) ) ) }

When the term 
~~
‘ — (8 — B)2 is of order ~2 it dominates in the

radical, and it is enough to use Eq. 4.15 for the roots 5

We note that when y -- 0 this gives the two roots

ó i 8  and ó i B

which represents the floor spectrum solution for the damped system.

2The solution (Eq. 4.15) suggests a double root when y = (8  — B) , but it

has already been shown that a double root will only occur ii 8 = 0; thus

when y — (8 — B)2 is of order or higher, the complete expression must

be used. In the particular case y = (B — B)2 the roots are:

(4.17)

When B = 0, the roots become

= i ± ~ {(i-B
2

) (y~~B
2

) ½ (B
2
~ ~) + iB(Y-B2)} (4.18)

For fixed B the roots go from

~~= i~~~±~~~~
½ for y >> 82 to 6 = i B —~~- , 0 f o r y - ~ O

When y = 11
2
, Eq. 4.18 indicates a double root at

~~= iB/2

However, by consideration of the complete Eq. 4.5 and substitution of B = 0,

y = B2 it is easy to show that the double root is given by:-

27
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= i - (4.19) -

The pattern of the roots in the p plane for B = 0 is shown in Fig. 6.

When y ~ (B — 11)2 the nature of the solution depends on whether
y > (8 — B)2 or y < (8 — B)2 . For the first the roots are given in Eq. 4.15.

For the latter they become, to lowest order

= i (8 + B ± ((8-B)
2 

- y) ½ ) / 2  (4.20)

The roots in the p plane thus have the same imaginary value iw, but are

equally spaced from (8 + B)/2 on a line parallel to the real axis. It is

important to note that both roots lie in the left—hand plane for all

nonzero values of B, B and y so that the transient response of the system

always decays.

4.4 DAMPED, SLIGHTLY DETUNED NO-DEGREE--OF-FREEDOM SYSTEM

In this instance the large number of parameters makes it convenient

to illustrate the form of the solution by considering the special case

when B B. Here

X =

and ~ = 0, giving

= 4 + 
~~~~ 

+ ~2 , ½ .
~ ~ 

8+B (4.21)

and 

= iw (1 (~ ÷ ~~~~ B+B 
(4.22)

These roots are similar to those shown in Fig. 5, except that they are

shifted to the left by w(~~~) .

I
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Figure 6. Root Locu~s for Damped , Tuned 2 DOF System.
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SECTION 5

INVERSION OF TRANSFORM SOLUTION FOR TWO—DEGREE-OF-FREEDOM SYSTEM

The formal inversion of the transform Eq. 4.1 is 1
= 
~~~ J ~ ~

i
g

(P ) ePt dp (5.1)

where F Is a suitable Bromwich path. If ii
g(P) 

is taken to be I, then the

inversion gives directly the Green ’s function of the solution, u
~
(t),

which will become the essential ingredient of the subsequent analysis.

The comp lete solution for the acceleration for given ground motion u
g
(t)

will take the form

~~(t) = 
J u c

(t_T) ~ g
(T) dT (5.2)

The Green ’s function will be obtained by the use of residue theory, there

being no branch cuts in the p plane . It will be convenient to obtain the

inversion of the transformed Green ’s function for the general case,

Eq. 4.6 and for different ranges of the parameters y, B, B and ~,
corresponding to the special cases discussed in detail in the previous

section.

To obtain the inversion the denominator D(p) is written in the form

D(p) - 

~~~~ 
- 

~
‘1~~

’ - - 

“2~
where

p
1 ~~ (1 + 4 + -

~

-

~ 
—w (~~~~ + ~~) 

I

I
and and are the complex conjugates of p

1 
and p

2 - Evaluating the

residues at each pole and collecting complex conjugate terms in pairs

lead to the result, correct to dominant order ,

I
_ _ _ _  

- 
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~i (t) = 
w 

e~~~~
+
~~

t
~
’2 A sin wt cos tAsin wQ.+

G A 2 + p 2 2 2 2 (5.3)

— A cosh ~4t sin c4t cos w(1+~)t — sinh cos w~t cos w(1+~)t

— jl cosh -
~~ wt sin w~-t sin w(1+~)t }

The results predicted by this solution are explored in several special cases.

5.1 Undamped, tuned system. When 13 = 0, B = 0 and ~ 0, the solution

re taining terms to the order takes the form

3 w .  wu
~
(t) -i-- sin wt cos flt — —r cos wt sin r~t-Y

where = (5.4)

5.2 Undamped, slightly detuned two—degree—of—freedom system.

In this case the Green’s function for the solution takes the form ,

re taining here terms up to order €2

~i~ (t) = — 

2
(ff cos w (l-4)t sin ~lt (5.5)

wnere now q = (~2+y) ½ w/2.

5.3 Damped, tuned two—degree—of—freedom system.

For the situation where ~ = 0 it is convenient to obtain the inversion

of the transformed Green’s function for three different ranges of the

parameters y, 3, B.

2
i) For y >(13 — B) we can write D(p) in the form

D(p) = (p—iw+c 1w) (p+iw+c1w) (p—lw +c2w) (p+fw+€2w)

where
= 

B + B 
+ ~ - (8-B) )~

1 3 + B  i~~ 
2

e
1 

= 
2 — ~~ ~ — (B—B ) )

1 31
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Evaluating the residues at each pole and collecting complex conjugate

terms in pairs leads to the result, correct to uomi~ant order ,

w e 1 3 + wt/2 i JY_ (t 3_B) 2 wt/2 (5.6)

This function represents a damped beat type solution , the beat frequency

being w — (8_B)T/2 which is much smaller than the tuning frequency w

ii) For I < (13—B)
2 writing D(p) in the same form as before , evaluating

the residues at each pole and collecting terms in conjugate pairs leads

to a Green’s function of the form:

ii (t) = — ~ e
_ +

~~~
t
~
’2 coswt sinh ~

1( B— B) 2 — I wt/2 (5.7)G /(B~B)
2 

-

2 2
Since (8-4-B) > (B—B) — 1 for non—zero B, B and y, the term exp[—(B+B)wt/2]

dominates the term sinh /(13—B)2 —ywt/2. The solution can be interpreted as

overdamped beats by analogy with the concept of overdamped vibrations. For

large values of wt the solution has the appearance of an oscillation of

frequency w damped by an exponential with factor

- ~~

- — -
~~ ~ — /~B— B) ’ —

iii) For y = (B—B) the result in Eq. 4.15 predicts a double

pole. However, we have already shown that if 13 ,~ 0, a double pole will

not appear. In fact, the more accurate location of the root gives:

p iw— 2 w + i w B ~y 2/2 (5.8)

Proceeding in the same manner as before to evaluate the residues the

following result is obtained :
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u
G
(t) - 

w e 8+B)wt/2 
coswt sin 13

½ ½ /2 (5.9)

As in Eq. 5.6 this represents damped beats. The beat period is of order
3 /2

C and is thus very long.

iv) When B = 0 and = B2 a genuine double root appears . The

Green’s function solution in this case takes the form :

= — 
1 ~~~ 

~~~~~~ cos wt (5.10)

This case can be interpreted as critically damped beats.

5.4 Damped, slightly detuned two—degrees—of—freedom system.

In the special case of a detuned damped system with 13 = B the

appropriate Green ’s functior solution is

uG
(t) = - e~~~~~~

)t/2 sin ~ t cos w(l+~/2)t (5.11)
(y+

~ 
)
~

where fl = (y~~2)•2 w/2.

(
I

_ _ _ _  - 

.-

~~~~ 

- 

• 

— - —

~~~~~~~~~:~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ __ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~
—- — - ‘ -  - - - —

~~~~~~~~

- -

~~~~

SECTION 6

APPLICATION TO EQUIPMENT MOUNTING DESIGN ;

UNDANPED TUNED SYSTEMS

The results obtained in tile previous section , fo r the response of

various types of damped , undamped , tuned or untuned systems can be utilized

in the desi gn of equipment or equipment mounting. The least complicated

forms of these equations are those for the undamped tuned system and it is

worthwhile to examine these in detail before proceeding with more general

cases. Many of the basic features of the phenomena are more readily

apparent for this situation . The methods developed for the damped and

tuned or detuned cases are extensions of the method developed for this

case.

I
The results given in Eqs. 5—2 wi th 5—4 could in principle be used

by a des igner of equipmen t or eq uipmen t moun ting , if a specified ground

acceleration history were available to estimate the forces which would be

developed in the equipment or its mounting . However, such inf orma tion is

not readily available to a designer and the computation involved in these

integrals may also be inconvenient during the design process. It would be

more common to begin with a design spectrum which may be specified by a

code or determined from averaging several possible inputs as for example jn

seismic design , Reference 14. We are thus interested in determining

to what extent the results in Eqs. 5—2 with 5—4 can be used to provide

estimates of maximum acceleration when the information available is the

response spectrum of the ground motion i
g~ 

In the following sections a

number of al terna tive approaches are exp lored.
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6.1 FLOOR SPECTRUM ANALYSIS

4 
When the Gree n ’s function obtained for the undamped tuned system

( Eq. 5—4 is substituted in Eq. 5—2 the response is given by

1 1( t )  = j  
f 

~~~~~ ( T)  {
~ 
I~ cos ~ ( t- i)  sin w( t T)

f — sin f l ( t — T )  cos (a ( t_ T) }  di (6—1)

wi th rì = w1 2/2.

For small values of r~t th i s  reduces to

= w I j o  {-
~ 

sin w ( t — T )  - w (t—T) cos ~ ( t — T ) }  dT (6-2)

Note that th is result is independent of and could be obtained directly

by means of the floor spectrum analysis method whereby the input to the

s t r u c t u r e  is used to compute the base motion at the equipment assuming the

equipment  to be absent and the equipment motion is calculated with this

motion as input. I t  is clear that this approximation is valid for small

values of flt , i.e. wy
2t/2 ~~ < I. The essential characteristic of this

result is that it neglects interaction between the  structure and the
1

equipment -

One other feature of the floor spectrum analysis is that it can

be obtained from the basic equations by setting I = 0. A double pole will

then appear in the tuned case (for an untuned system only simp le poles

occur). This double pole leads to terms in t cos wt and t sin wt ~~

inversion . Thus the floor spectrum analysis cannot be used to determine

maximum displacement or acceleration for undamped tuned systems since it

yields responses which grow without limit. It follows that although the

f loor  spectrum analysis is a valuable method for untuned systems it has no

meaning for undamped tuned systems .
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6.2 MODIFIED GROUND MOTION SPECTRA

When n t is not much smaller than unity the term in Eq. 6—1

rn :it iplied by y~ is neg lig ible in compar ison to the other and i t  becomes

(t
ii(t) = — w J U (T)  sin f l ( t — ) cos w (t—r)d-r (6—3)

) g
0

Expanding the term cos w (t—T) in Eq. 6—3 allows it to be written in the

form

( ft 2
ü(t) = — cos (wt— ~) (J 

Nig
(T) cos wil sin r i ( t — T ) d T )

0
2
~~½

+ 
(J 

[~Li
g

(~t )  sin T ]  s in  f l ( t — T ) d f l  ~ ( 6— 4)

0
(t

where 

J ~i (T) sin WTJ sin r~(t—T )dT

= tan~~ 
a—______ 

_
~~~~~-~~~

_
~~~~~~~~

_
~~~~ 

-
~~~~

J 
EUg(T) cos wi} sin n (t—T)dT

0

The terms

f [ii~~(T) cos w T} sin f l ( t — T ) d i

0

(t

~ 
j (ii

g
( T )  sin w T l  sin ~(t—T)dT (6—7)

0

can be interpreted as the response of a single—degree—of—freedom system

with frequency r~ to tile modified ground input accelerations U (t)cos Wt

and L
g
(t) sin wt. We also note that n << w. The term cos (wt~~ ) is a

rapidly oscillating function and achieves its maximum many times. The

ç imtegrals are slowly oscillating functions and represent a slowl y vary ing

envelope of the more rap idl y oscillatin g term . The maximum of the product

is ac cord ing l y very near l y the maximum of the envelope .

Th us , one way to estimate the motion of the equipmen t is to

construct spectra for the modified ground accelerations. From this an
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estimate of the maximum acceleration is

1/2
umax = {S~ (n)

2 
+ S~~(r))2} (6—8)

A sim ilar expression can be obtained for the disp lacemen t. In the above ,

the terms S~~( i) and S~~(n) are undamped acceleration response spectra for

the modified ground motions U
g
(t) cos wt and ii

5
(t) sin wt , respectively.

In princip le then it is possible to develop a design technique if the time

history U
g
(t) is available by constructing the low—frequency response

spectra for the modified ground motions. In certain cases the given

inf orma ti on may be onl y the response spectrum of U and not the ground

motion i t s e l f .  As f a r  as can be seen at the moment the re is no way to

compute the spectra for the modified groun i motion if the only in formation

available is the spectrum of the actua l ground motion .

6.3 AMPLIFIED GROUND MOTION SPECTRUM

In view of the remarks in the previous section , we now develop an

alternative approach in which the term sin fl(t—i) is expanded , leading to

t 2

~i(t) - (nt - 0) { (1 iig(1) cos ni cos w(t-i)dT)

+ 
(J 

U
g
(T) sin fT cos w(t-t)dT) (6 9)

where 

f 
U ( i )  sin ryr cos

4 g

= tan ’ ~~~~~~~~~~~~~~~~~~~~~~~ — (6-10)
f t
J ii

g
(T) cos ni cos

0

We are interested in situations where the ground motion has a prescribed

finite duration and fpi  those frequencies w where the maximum response of a

single—degree— of—freedom oscillator , i.e. the response spectra , is ach ieved

late in or after the termination of the ground motion . These frequencies

correspond to peaks in the response spectrum of ground motion of the

_ _ _ _ _ _ _ _ _ _ _ _  

__________



ear thquake type. Design spec tra , reflec ting the probabilistic motion of

the input , correspond closely to the peaks of actual spectra and thus

presuppose late occuring maxima . In blast—type ground motion which is of

short duration it is likely that the maximum values of equipment response -
-

will occur at times larger than the duration of the ground motion .

Thus, for  values of << 1, where t
1 
is the duration of the

ground motion , the first integral in Eq. 6—9 can be approximated by

J ii
g

(T) cos w(t - T ) d i  (6-il) 
-

and the second neglected since sin rjt will be bounded by cit
1 

<~ 1. For

<< 1, then , we have -

It
u(t) = — sin r~t I U (T) cos w ( t — i ) d T  (6— 12)) g

0

The term in the integral is a function oscillating with frequency w 
I

which is high compared to n and a maximum of that term will nearly

coincide with the maximum of sin flt. An estimate of the maximum value -

— 

of ii(t) is

t

Lax 
= max f U

g
c~t cos w (t—i)dr (6—13)

If the disp lacemen t , velocity and acceleration response spectra as

functions of frequency w and damping parameter B are denoted by S
D

(na , B),

S
~

(w. 8) and SA (w , 13) respectively ,  we then recogn ize tha t 
-

max f U
g
(T) cos w(t-i)dr (6-14)

0

is the undamped velocity response spectrum S
v

(w , 0) f or a sing le—degree— -

of—f reedom system with frequency w. Thus , we have as an estimate of U
max

the expression

wu = 
~~ S Ow , 0) (6—15)max V -

_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~



Since SD = S
v/w and SA 

= WS4~f i then

S (w , 0)
Juj ~~

—j -  - (6—16)max -a
I

I S~~(u~, 0)l u l max = — -
~~~~~~ ,~~—- (6—17)
I

( I t follows tha t if an engineer ing designe r is given onl y the response

spectrum of the ground motion , the max imum disp lacement and force in the

I equ ipmen t can be est ima ted by using these spectra amp lif ied  by the factor

~~~~~ These remarks refer of course to the equivalent two—degree—of—freedom

system. The results for the general system are obtained by utilizing the

I
factors in Eqs. 3—14 and 3—15.

I

I
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SECTION 7

APPLICATION TO EQUIPMENT MOUNTING DESIGN ;

DAMPED , TUNED AND SLIGHTLY IJNTUNED SYSTEMS

In the prev ious secti on , a number of pro ced ures were devel oped for

undamped tuned systems which could prov ide information to a designer of

equipment or equipment mounting. These procedures were motivated by the

fact that in many cases a specified time history of the ground motion

appl ied to the structure would not be available except in the restricted

form of a design spectrum . These results enable the designer to utilize the

design spectrum for the structure to estimate directl y mn’ximum values of the

eq uipmen t accelera tion and displacement.

Three differen t approaches to the design problem were developed .

These were the floor spectrum method , the modified ground motion spectrum

method and the amplified ground motion spectrum method . It was shown that

for tuned , undamped systems the floor spectrum method was not a valid

technique . The modified ground motion spectrum method was valid , but

inconvenient and it is clear that the amplified ground motion spectrum was

the most convenient to use in estimating the response of light undamped

equipment.

I

For damped tuned systems it is seen from Eq. 4—3 that if y << I,

then 
~ 

is negligible if 413B >> I. This means that f or such cases the

possibility of significant interaction between equipment and structure can

be ignored and the floor spectrum method used to determine the response of

the equipment. However , the floor spectrum method requires tile

computation of time histories , and thus , if a design spectrum is the only

given information , its use may not be the most convenient.

Since the results of the previous section sl owed that  the

.-

. 
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amplified response spectrum method was the most convenient to use, similar -~
approximations will be developed for damped and slightly detuned systems.

7.1 UNDAMPED , SLIGH TLY DETUNED SYSTEMS

The acceleration response i(t) to imposed ground acceleration

U
g
(t) is obtained from Eqs. 5—2 with 5—5 in the form

f t ~- 

—

11(t) = — -
~~~~~~-j - j U ( t)  sin n (t—i) cos w(l + ~) (t-T)dTg 2
‘~~‘ ‘ 0 (7.1)

where

2 1-
r~~ = (~~+y)

2w/2

Expanding the term sin n ( t— T )  as was done in Eq. 6—9 of the

previous section and neglecting the analogous terms an estimate of the maximum

acceleration is obtained as

S (w(l+~ /2) ,O)
111 1 = A 

- 07.2)
max

This result is still valid if y << ~2 providing ~ << 1. For such cases the

floor spectrum method is applicable , but of course could not be used if the only

information on the ground motion is a design spectrum . The above result is

clearly more conven ient and equally valid. The beating phenomenon whi ch is

the physical basis of the result will appear in the floor spectrum solution

in the slightly de tuned case , the beating being between the two closely

spaced frequencies w and w(l+~).

7.2 DAMPED, TUNED SYSTEMS

The results obtained in Section 3 for  the transfer  func tions for

damped tuned systems, indicate that four sets of the parameters I~ B and B

have to be identified.

41
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2Case 1: ‘j> (B— B)

The acceleration response 11(t) to imposed ground acceleration

L
g
(t) is given by

11(t) - 
W J U (i) e 013

~ 
t-T)/2 

cos to(t -T)  sin n (t-i)di
(y (B B)2)

2 

~ 

g 
( 7 .3 )

where
to 2 ½

ci = -
~~ (y—(13— B)

Expanding the term sin ri(t—T) leads to

~~t) = - T cos(cit-0) U (T) e 
t-T)/2 

cos w (t-T)
(I~ (B~B)2Yi 0

cos flT dT}
2 
+ 

~ 
U
g
(T) e (B+ t — T )/ 2  

cos w(t—T) sin fT dT}
2
~
i

0 k7 .4
where 

—l ~ 

‘Ii
g
(T) cos ~~ i e~~ 

to(t_t)/2
cos w(t—t)di

0 = tan - 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(7.5)

We are interested in situations where the ground motion has a prescribed

finite duration and frequencies for which the maximum response of a single—

degree—of—f reedom oscillator is achieved late in or after the termination of

the ground motion . Thus, for values of nt
1 

<< 1 where t
1 

is the duration of

the ground motion the first integral in Eq. 7—4 can be approximated by f
f U

g
(T) e

(8+ to0t_T
~~

2
cosw (t~~T)dT

and the second neg lec ted since sin ~yr will be bounded by cit
1 

<< 1 and ti
g 

= 0

for t > t~ . Thus we take

11(t ) = - J ~ ~~ 
(8+B)to(t-T)/2 

cos w (t-T)di 
~~ 6)

(1—013—B) ) 2  g
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When the parameters ~½, ~ and B are small we may interpret this result in

the following way:

For t > t
1 

the above expression can be written in the form ;

11(t) - —~]-~ e
(8
~~~~

t
~
’2 

R cos(wt-’V)

where

R = (A2 + with

A
1
= Lt

1 
U
g
(t) e+~~~~~

toth/2 cos tot dt

A
2 
[1 Ug

(t) ~
+(8+B)wt/2 

sin tot dt

and
= tan 1 

A
2/A 1

In the above,R and 
~V are constants Independent of t for t > t~~, and

R cos(wt—q’) is a rapidly varying function of time . The term

— (8+B)wt/2
~~~sin flt e

is a slow ly varying envelope curve which attains its maximum value at a time
t* given by

tan flt* = 2fl/(8-4-B)w 
(7.7)

The value of sin qt at which the envelope achieves its maximum is

sin flt~ =
(n2÷(8+B) 2 w2 ,4) (7.8)

It follows that

111 1 = Iii(t*) ! = ——-
~~~

-_ — I s in uit *Jma 
(y_ (B_B)2)

I J 11
8
i e~ 

w(t*_T)/2 
cos w(t*_T)dTI (7.9)
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Note that the term

J ‘Li
g
(T) e 

w(t—i) 
~~~~~ W (t_T)diLax

is, to the order :f 13 and B, the velocity response spect rum S~ (w , ~~~) for

a damped single—degree—of—freedom oscillator with damping factor (B+B)/2 and is a

bound for the integral in Eq. 7—9. Thus an estimate for the maximum equip-

men t acce leration is
= 

tolsin nt.~I 5 (w , ~~~)max (y_ (8_B) 2)l 
V 2 —

Utilizing the value of sin nt* from Eq. 7—8, the final estimate is

I ” Iu max 
(y+48B)½ 

(7.10)

For the ligh tly damped systems considered here

2W S V
= S A W SD

so that the result can be written in the alternative forms,

= SA
(to
~ 
~~~~~~~ 413~~~~2 (7.11) 

4

or

1/2 (7.12)

~
u(t)Im5x = SD

(w , —~---)/(y+4BB)

It follows that if a designer is given only response spectra, at various

damping values, of the ground motion applied to the structure , the maximum

displacement and force in the equipment can be estimated by using the

appropriate damped spectra for a damping factor equal to the average of

those in the structu re and equipmen t, amplified by the factor (y+413B) 2.

It is to be noted that if 13+B is fi xed , the maximum value of 413B is achieved

when 13 = B, yielding the smallest value of the amplification factor. Thus

if the total damping is fixed the optimal choice is to have it shared

equally by equipment and structure .
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Case 2: y < (B—B)2

The solution in th is  case for  ( 1(t) in terms of specified groun d

motion U
g
(t) takes the form

t
~~~ ( t)  = - 

- ~~~~~~~~~~~~ f U (T) ~~~~~~ 
w(t-t)/2 cos c~(t-T) sinh fl(t-T)dT

~(B B) ‘i’)  
0 

g

(7.1 3)
where

ci = ((B-B)
2 

- ~~)½ (0/2

This can be written in a form analogous to that in Eq. 7—4 with the envelope

now in the form ~~~~~~~ wt /2
slflh cit. When the envelope is analyzed as

before for its maximum value It is found that the time t = t* is such tha t

sinh flt* = fl / ( f l~ + (134-B) 2 ~ 2
/4) ½

Following the arguments used to obtain the previous results it is

found that as before the amplication factor is (y+4BB)½ .

Case 3: I = (13—B)
2

The solution in this case takes the form

~ ( t )  = - J (T) e 
(~~ B)w(t-T)/2 cos ~(t-i) sin n (t-T)dT (7.14)

where now

=

In this case the envelope takes the form

sin nte
_ +

~~
tot/2

and the time t~ Is given by

tan rit* = 2ri/(8+B)w
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Using this and the appropriate value for ci gives as the amp l i f ica tion fac tor

the term

1

((13+B)
2
+By)½

The term 13y is of order C
3 and may be neg lected in comparison to

(B+B)
2
. Thus the amp l i f i ca tion fac tor is simply (13-4-B) ’, but note that

since I = (B—B)
2 

that (13 +B) = (Yf48B)”
~-a Thus , the same result as in the two

previous cases applies here .

Case 4: 1 = B2, 13 0

This is the situation in which a true double root appears and the

solu tion has the form of a damped floor spec trum result ,

~(t) 
= - 

~~ f U~ (t) e
_ 5to (t_T

~~
2
cos w(t-T)’(t T)dT (7.15) - 

-

The envelope is tot e~~
toth’2 

the maximum of which is reached at t* given by

= 2/B. This leads to an amplification factor 1/B. We note , however , t
that since 

~ 
= B

2 
and 13 = 0, the amplification factor is again

I —
,
-

-½
(y+48B)

Thus the Eqs. 7—11 and 7—12 obtained for Case 1 are in f a c t  correct for  all

combinat ions of 1, 13 and B, wh ich is a surprising result  when one considers

the d i f f e r ences  in form of the Green ’s funct ions  fo r  each case.

7.3 DAMPED , SLIGHTLY DETUNED CASE

The addi t ion of slight detuning considerably modified the form of

the response which now becomes

I

t
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(
11(t) = - z e

_to (t~T~~2 U ( t )  A sinh w (t-T) cos w~~(t-T)(X +p )~~ 
g

sin i~(l4-~) ( t - ’r)

+ A cash t o ( t — T )  sin ( t — T )  cos W (1+~ ) ( t ~4r )

(7.16)

+ ~ sinh to(t—T ) cos (t-i ) cos w(14) (t-T)2 2

+ p cash ~~
- w(t—T) sin w~- (t—r) sin w(l4) (t— T) dT ,

where A and p are defined in terms of 
~~~, ~~~‘ 

13, B in Eqs. 3—7 and 3—8. To

simplify the algebraic mani pulations needed for this considerably more

complicated expression attention is focused on a single case which will be

illustrative of the result. The case selected is that of optimal use of

damping. That is, if a f ixed tota l  amount of dam p ing B + B is specified then

the best selection of this damping is the case 13 B. Then Eq.  7—1 6 takes

the form

11(t) = - f~ e_to0~~~~ t
~~~

/2 U (r) sin (t-T) cos w(14)(t-i)di

0 (7.17)
where

A = (~
2+I) l/2

Expanding the sin ~4(t—~) term and recall ing tha t for t >> t 1, the duration

— 
- of the ground motion , the term sin tot , can be neglected , we have

— .. wu( t ) = — -
~~ e sin Awt/2 R cos(wt— ~)

where here

R = (A~+4)~
”2 and ~i = tan ’ A2/A 1

with

I
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(t e~~
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wt/2
~05 w(l+f~/2)t dt

A2 = f~1 ii
g

(t) e+~~+~~ tot/2
1 w(l+1/2)t dt

The slowly varying envelope function

—( 13+B)wt/2e sin A w t / 2

has its maximum a t a t Ime t~ such that - - 
-

sin Awt*/2 
A 

-
~~~~~ 

-

O~+(B÷B) 
2)~~

From this result and using the same reasoning as before

~ ~~~~~~A 2 (7.18)max 
(~~

2
+Y+413B)~

and

ax 

sD((i4)w,
i
~~!) (7. 19)

m 
(~ +y+413B)~

It is surprising that for all the cases considered a universal result -

applies: The appropriate response spectrum evaluated at the average damping

and the average frequency of structure and equipment is multiplied by the

amplification factor

2 _½
(~ +y+413B)

I -

• 1-

I
i
(
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SECTION 8

COMPLETE SOLUTION INCLUDING OTHER POLES

In the previous sections we have determined the contribution to

the response from the tuning poles of the equ ipmen t—st ruc tu re  system. This

is of course the dominant part of the response in the case of ligh t

( equipment mass, but it is easy to include the contributions from the other

poles. To do this recall that the non—tuning poles of Eq. 3—12 are close to

t he i r  location for  the s t r u c t u r e  alone , as indicated in Fig. 3. For the

non— tuned mode the poles are

p — B 1 2  ± i12 (8—1)m m  m

Evaluating the residues and dropping the negligible terms, which are thosc

k2
multiplied by the small modal mass ratio , m

~r 
/Mk << 1, k = 1 to N, we

obtain , to dominan t order , the contribution from the m th poles as

Ctm

12 e sin 12 t ,m ~ n (8—2a)
/ 2 m mi—(Q i to)

ml

and contributions of the same order from the tuning poles as

( N Ctm

t r 
2 

sin tot
m 1  i— ( w/ 12 )in

where C’~ is de f ined  in Eq. 3—15. Thus , the complete solution for the

response of the eq ui pmen t takes the form

t N ~
m — B Q  (t— -r)

u ( t )  = f U (-r ) 2 ‘
~~~~~ 

(1~m e m tn sin
g m 1  1— (Q /w~m

(8—3)

+ 2 (~~
_13to t_T

5~~ w(t-T)~ + uc
(t T) 

} 
dT

m=l 1-(to/ fl ) Jm
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where U
~
(t) is the appropriate form of contribution from the tuning poles

given in its various forms in Section 5.

In utilizing this complete solution to develop the spectral

response in each mode for design purposes, it is important to note that the

two parts of the solution in Eq. 8—3 have an entirely different character. The

contributions from the non—tuning poles and the nondominant contributions from

the tuning poles are conventional and would attain their peaks during the ground

excitation or shortly thereafter, while the dominant response from the tuning

poles as indicated in Sections 6 and 7 is controlled by the energy transfer from

the struc ture to the equipment through bea ting, which takes a relatively long

time. The maximum in the latter case will be achieved considerably later than

the former. It does not make sense to add these in the conventional way such

as square root of the sum of squares, or by a similar rule . In fact , they

should not be added at all, but treated as separate maxima. The maximum res-

ponse from the nondominant contributions can be estimated by the conventional

method of square root of the sum of squares.

Accordingly , the estimate of the maximum acceleration has two parts,

an early peak given by

N ~
m

r I r
ju = L i S (12 ,B• max m l  L1- 12 / ) 2 A m in

nn~n 
m 

(8—4)

r N  c~ , 2 ½
r 

2 SA (u ,B) IL m l  l-(w/12 ) Jinm~n

and the other, a later peak, from the dominant contribtions of the tuning poles

given by

L CI’ B-I-B

l u i x = sA (to(l+~
)I .__

n) (8—5)

(
~

2
+Y e

~c4 BB )½
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where ~ = (12 —w)/to, and is given by Eq. 3—14. For light equipment mass

and lightly damped closely tuned systems the second peak will be the most

important .

Although not of immediate interest in this report , it is also

possible to utilize the methods developed to obtain estimates of the peak

response for systems which are grossly detuned , i.e. , where the equipment
f requency  is spaced between and wel l  away from al.l of the structural frequencies.

To do this note that for light mass the structure poles are only

slightly shifted from their location for the structure alone, namely

p — B 1 2  ± iQm ( 8— 6)
m m

and additional poles at

p = — B w ± i w  (8—7)

due to the equipment are included as shown in Fig. 7 (illustrating the

undamped case). The residues at the structure poles are as

before wi th  the contr ibut ions  from each m = 1 to N poles given by Eq. 8— 2a.

The residues at the equipment poles, Eq. 8—7 , provide a contribution to the

Green ’s function in the form , simil ar to Eq. 8—2b

r N  ~m 1
— 

r I w e B(Ot sin tot (8—8)Lm~ l_ (to/12 )2J

The derivation is completely standard and is similar to the terms from the

s t r u c t u r e  poles. The comp lete response for  the  equi pmen t in the grossly

untuned case is thus given by

(t N ~
m 

—B 12 (t—T )
11(t) = J ii (-r ) ~ ~~~~~~~~~~~~~~~~~~~~~~ 12

m ~
, m m 

8th 12 (t—T)

0 
g m 1  1_ (12 /w)

2

~~ ~~~~~~~~~~~~~~~~~~~~~~~~ to ~~~~ 
(t-t) . to (t-T~jdT (8-9)

\m= 1 l_ (to/l2 )2/ J
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and the appropriate estimate of the peak response is the convent ional  one

using square root of the sum of squar es

N I c tm 
1 2

= 
r 

- - S (12 ,B) Imax 
In lLl_ (12

m
/w) 2 A m m j

rN C’~ 1 2 ½+1 2 .._
~
._L_

_ _ 
sA (w ,13)J (8—10)

L m 1  1- :to/12 )2 j
This result can be used as an alternative to time history or modal analysis

of the composite N + 1 system. It is also an alternative to the standard floor

spectrum analysis which requires computation of the time history of the

structure ajone. This is next app lied as input to the equipment and then the

time history of the equipment is computed . Note that Eq. 8—9 is completel y

independent of the modal mass ratios . [n fact , it represents the general

• closed form solution of the floor—spectrum method , and its interpretation

direc tly provides the simp le es tima te , Eq. 8—10. Indeed , the preced ing

analysis which led to Eq. 8—9 is the mathematical justification for the use

of the floor spectrum method for the grossly detuned system. All of the

information needed for Eq. 8—10 is available from the building design , the

equipment frequency , and the design spectrum ; it should thus be very

convenient for  the designer to use in practical design applications.

It is worthwhile noting that the methods developed for dealing with

the tuned poles can be used to de term ine the response of systems with closely

spaced modes even if no equipmen t is included . Of course, in this case the

approximations used here based on the small mass ratio could not be used , but

the t r ea tmen t  of the envel ope of the bea ting response would be en tire l y

similar. It is not to be expected , however , that , in the case of c losel y

spaced modes the maximum response would be much dift erent from that of the

*
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other modes, except that it will occur at a much later time. It is the

light equipment mass that produces the large amplification, and the dominance

of the result in Eq. 8—5 for the late peak over that in Eq. 8—4 for the early

peak.

This is the reason that the peculiar ad hoc approach used by

Penzien and Chopra in Reference 11 led to a good result. In their approach,

they model an N—degree—of—freedom system with a light appendage by consider-

ing a set of N—two—degree—of—freedom systems in which one component is one of

the N modes of the structure without an appendage and the other is always the

appendage and numerically solve the N sets of coupled differential equations.

They then add together the peaks from each of the two—degree—of—freedom systems

by the square root of the sum of the squares to obtain the maximum response of

the appendage. That the result is reasonable arises from the fact that in a

tuned system the contribution from the tuning poles, and thus in their case

from the particular two—degree—of—freedom system which is tuned , dominates the

rest. For this reason, their result is fortuitous. Were this approach used

for an untuned system, it could produce erroneous results.
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NOTATION

A 1, A2 
constants

c equipment damping coefficient

C model damping coefficient

structure damping matrix

C~ modal participation factor

D( ) transform transfer function denominator

e. equipment attachment vector

F( ) interaction force between equipment and s t ructure

i , j, k, 2 ,
etc. indices

k equipment support s t i f fnes s

K model elastic stiffness

K1. structure stiffness matrix

m equipment mass

M model larger mass

M.. structure mass matrix

( M modal mass

N total number of s t ruc tu ra l  degrees of freedom

N( ) transform transfer function numerator

p Laplace transform parameter

q generalized modal coordinate

r
i influence coefficient vector

t time

duration of input ground motion

I
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SA
( , ) acceleration response spectrum 

‘I
Sv( 

, ) velocity response spectrum

) displacement response spectrum

u, ~z, ii equipment displacement, velocity, acceleration

U , 1J , U model displacement, velocity, acceleration

U~~, lJ~ , U . structure displacement , velocity, acceleration

u
5
, Ü

g 
ground displacement , acceleration

..eff
U

g 
effective ground acceleration

uG 
Green’s function for equipment response

~, B, B damping factors

mass ratio

root locus variable

£ small parameter

C
1~~ 

£
2 

roots

A , ~i roots

TI beat frequency

phase angle

equipment natural frequency

structural natural frequency 
)

n

i’~~~~I
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